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The energy exchange between atoms and solids is very important
to the theory of adsorption or catalysis, as well as to the theory of
processes in which a major part is played by interaction of a crystal
surface with initial compounds or intermediates. The problem has
been considered [1,2] in the one-phonon approximation, Experiment
[3,4] indicates that condensation of atoms occurs with a probability of
the order of unity when the translational energy equals the energy
needed to excite several phonons in the solid. Ience the rate of energy
exchange is much greater than that predicted in {1,2]. The quantum-
mechanical argument is very complicated, so [ use simple models and
describe thie motion of tite atoms within the framework of classical
mechanics.

There are several papers [5~9] on this topic. The solid is usually
tepresented as a semiinfinite linear chain of elastically bound atoms,
the end atom acting as the surface atom that interacts with the incident
atom. A closed solution has been found [6, 7] for the equations of
motion of this system on the assumption that all the force constants
for the atomic interactions are equal for two particular cases: a) all
the atoms have the same mass, b) the mass of the incident atom is half
that of an atom in the chain. The equations have been solved numeri -
cally [8, 9] for several different masses of the incident atom and for
various force constants for the interaction of this with the surface. Here
[ give a solution in a closed form for arbitrary values of the force con-
stant at the surface and of the mass of the incident atom.
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1, General, All the interatomic distances are assumed equal. In-
teratomic forces are rapidly decreasing functions of distance, so we
consider only the interaction of an atom with its two nearest neighbors,
and that in the harmonic approximation. Let K be the force constant
of the chain, whose atoms are of mass M. This chain interacts with
an atom A (Fig. 1), whose mass is My. Figure 2 shows the potential
for the interaction of A with the end atom B, which is represented
as the truncated potential for a harmonic oscillator of force constant
Ky. The cutoff distance has a value x(0), while the binding energy

Q obeys Q = KOXZ(O)/Q. The numbering of the atoms will be clear
from Fig. 1. The system of equations of motion is

Myry”™ (1) = — Ky (re — "1),
Mr () = Ko (rg — 1) — K (r; — o)y
Mry" (1) = K (rjo1 — 2rp + 1)

(n212), (1)

in which 1y, is the deviation of atom n from irs equilibrium position,
In this case we consider a lattice at 0° K, i.e., all the lattice
atoms are initially at rest, The initial conditions are then written as

rg (0) = a,
rn (0) =0,

re (0) = v,
' (0) =0 (rn21), (2)

in which v is the velocity of atom A.
We introduce the new variables x and r, together with the quanti -
ties B and u,
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Schrodinger's method [10], as developed by others [7, 8, 11], is

applied to get for x{r) the integrodifferential equation

1 1 ¢ Ia(s
Cm=—g e+ 73\ Al —ge, @)
U
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in which x(0) = a, x(0) = v/wy and Iy(s) is a Bessel function.

rig. 2
2. Solution of the equation of motion, The solution is found via a
Laplace transformation. Let X(p) be the transform of the desired func-
tion; then we have

4z (0) p 4 4 ()

X(p)= — . 4)
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The solution to (3) is expressed via the contour integral
a+z:oo
s =g ) X dp, )
a—ioo

Here g is a constant greater than the real part of any singularity
in X(p). Integration along the straight line Re p = ¢ may be replaced
by integration along any closed path in a finite part of the plane that
encloses all singularities of X(p).
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The integral of (5) may be expressed in terms of Lommel and
Bessel functions together with trigonometric functions. The Lommel
functions Uy(y, z) of two independent variables* are defined by

(]v(y‘ 5)= 2 (— 1™ (%Y»Em I, o ), (6)
m=0 L

where 1,1, ,(2) are Bessel functions.

“See [12] for tables of these functions.
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The function ‘-/P7 - 1 has singularities at p =i and p = —i. We e use the representation of the Bessel functions in the form of a
join these points by a line. The function w = Vp* + 1 — p images the contour integral
plane with the section of p within unit circle w = 1 in the plane of the
complex variable w. To the circles r = const in the w plane corre- I (y)= -,‘TSFVA exp [% (‘ - :_ﬂ dt, (13)
I

spond ellipses in the p plane, whose foci lie at the critical points. A

in which I, is a circle of arbitrary radius with its center at the origin,
ﬂ&\ Comparison of (6), (12), and (13) gives
2.5 \ 1

s L 1~-n) 1 s
3 F._( ws> Unﬂ[( w.> 1, ri]. (14)
2.2 t4 ™\ Consider the case where wg lies within the contour |w| = 1, which
N occurs for 3 > 4/(u + 2). The integrand in (10) has an essentiall
N \ /\ 8 y
s — TN T NG L special point w = U and two first-order poles w = t+Vw,. The integral
a2 N e \ / g equals the product of 271 by the sum of the amounts to be subtracted
) \ / from the integrand for the poleswithin the unit circle, plus the integral
over a circle of radius r < |wgl. Forn =1 we have
\LJ] Jer
-0
v ! g 2 exp[ z ( ! w)]dw
. ) a7\ =
Fig. 4 Jwh= s
Counterclockwise (positive) traversal of an ellipse corresponds to clock- 1 w /4
wise (negative) traversal of a circle. We now replace the variables =COBWT + 5=\ 37— exp [—— (—“ — w)]dw s
———— 2ni ) wt—w, 2 \w
..via the formula [13] w=+vp* +1 — pto get .
3 h
1¢ T (1 — (______B“'___._._)
z(t):z—,‘i}X(w)exp [—Q—(T—wﬂdw, o=\ BB/ * (15)
X ()= s —w) {20 0)w(d 1+ w?) 1) Here 1, is a circle of radius r < |wgl. The integral over I, by
w[(t—B) w4 (B +Bp —2) v +1] analogy with the above, is expressed via a Lommel function, For
n=0 we get
As our contour ! we may take a circle of unit radius, jw] = 1.
Here and subsequently we assume that the origin is traversed in the 1 1 - 1
positive direction. We put the rational function X(w) in the form of b Q " —w, exp i_—z— (T;—w)] dw=
a sum of fractions jwl=1
1.\ | 1 ( 1 T /1
s a " =—<——T> sinot +355\ a7, exp T(;——w) dw. (16)
z (0) A, W s i [
X(w)=—u7—+22w2—ws’ r
n=0 s=1
2—B—Buty Simple algebraic operations give us the solution to (3) once the

PR N . =0 — 2012 2 9B - 8)
e® 24— 1=V W B 4w - 2B integrals have been calculated. Before giving the final result, we

may simplify the notation by writing
The integral of (7) splits up into a sum of integrals of the form

1 1 N 1" 1"
i S 76"1’[7(70_—“’)]”‘"’» C) °‘=(“71) ’ 5=(”E) !
e c2@—t) L 2E—t) 2Ry B
i w" T (1 R R 2r@—1) .
Fegm EF—_w‘exP[T(T"”ﬂdw' (19)
lwi=1
¥ /
The substitution w = u”! shows that the integral of (9) is a Bessel o A
function Iy(7) of order zero. We assume that the point wg lies outside N He20d,
the contour |w| = 1, which is so for 8 < 4/(u +2). Then
1 i w? + w? 2 1 e
- == — |14 — RN 1
w’—ws ws[ +ws (ws> - ] b Y
We substitute (11) into (10) and make the change of variable w = /

=u"tto get //

m=0|ul=1 ] ———
x(— —u%)"”l w2 exp l:% (u — %)] du . (12) ‘7.:
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It is permissible to reverse the order of summation and integration
because the series in the integral converges uniformly and absolutely. Fig. &
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Then the solution may be written as follows;
for A< 4/(p+2), B=1, 8= 4p/(u+ 1)}

2 (1) = 2 (0) [, (tv) — oCU, @z, ©) + DT; (51, ©)] +
+ 2 (0) [CU, (av, ) — EU; (87, )] (17)

for B > 4/(u+2)yand 7 1
z (t) =z (0) [(1 — aC) 7y () + oC cos ot +
+ wClU, (@ v, 1) + DU, (b7, ©)] +
+ 2 (0) [C sinot — CU, @lv, v) — EU, (67, B, (18)
for B= 4/(p+2)
z (%) = z(0) [I, (v) + DU, (87, V)] — & (QEU, (87, T); (19)
for B=1and u > 2

1 1
o (0= O gy To (9)— g () +

+H(l" 1)22)(]2(7;—_—1,1) —+
+ !au )22) cos/ ﬂ + 2 (0)[ L) —
—2
_m~—?>1/;1’_—1l’1(1/;~1’f)+
_2 )
Tyl (20)

forB=1lpy =2and p=1

1 i
s ()= (0) [m o(t) —g =g T 1) —

_blp—2)

T Uz(Vu——H r>]+

+ 20 (0)[ o)+ ‘“"WL_UNVWT-T)}. 21

The solurion of (22) has been obtained previously [6,7].
For f=1land u=1,

z (1) =z (0) [I, (v) — I (V)] -+ 227 (0) [y (v) + Iz (V)] (22)
for 8= 4p/(u+ 17,
i\
x(r)=x(0){26’0[<:t~ﬂ) r,r]—[o(r)—

(n - 00-p )"
~n 3 A o ¢

n=0
4 2 (0) {11 () + (” + 1) Us [(i: ; i)‘/zr, r:l +
+2 gﬂ et o). (23)

3. Discussion, It is readily shown that all terms tend to 0 as 7 ~>
- = in these formulas, apart from the sine and cosine terms, which
correspond to excitation of local vibration, whose frequency lies above
the range of allowed frequencies, and the amplitude decreases ex-
ponentially away from the surface, In the harmonic approximation, the
energy corresponding to this vibration is not dissipated in the lattice
but persists on the atom. The other terms correspond to excitation of
crystal modes, and it can be shown thar the energy corresponding to
the crystalline vibrations is transferred to the chain in a time of the
order of 10™* sec. The anharmonicity gives the local vibration a
finite lifetime of 107% to 107 sec
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This solution allows us to discuss the mechanical relaxation of a
solid when an atom is adsorbed on it. The mean bond energy in
chemisorption is much greater than the mean kinetic energy of the
atoms in the gas, so for simplicity we may assume that the velocity
of the incident atom is 0, The atom begins to vibrate and gives its
energy to the chain when its distance from the surface becomes equal
to x(0).

Figure 3 shows the time variation of the distance between the end
atom of the chain and the gas atom, as expressed in relative units, for
several values of the mass ratio y, with 8 = 1. Curve 1 corresponds to
4= 8;curve 2, to g = 1; and curve 3, to g = 0.2, Local oscillation
occurs for u= 3, and the dashed line in Fig. 3 shows the contribution
of the crystal oscillations to x(7)/x(0). The energy corresponding to
the crystal modes is transferred more slowly to the lattice as the mass
of the incident atom decreases. For u « 1 the motion is aperiodic.

Figure 4 shows x(7)/x(0) for various B for y= 1. Curve 1 is for 8=
= 2,2, curve 2 is for B= 1, and curve 3 is for 8= 0.1. Local oscil-
lation occurs for 3= 2.2; the broken line in Fig, 4 shows the contri-
bution from band oscillations to x(7)/x(0). The rate of relaxation of
the vibrational energy is directly related to the interaction constant.
A large constant implies that the dissipation of the energy of the band
modes occurs at roughly the rate applicable if all the force constants
are equal,

Figure 5 shows the frequency of the local oscillation in units of
w/wy, as a function of B for various p. This frequency substantially
exceeds the Debye frequency wy, when a light atom is adsorbed.

Figure 6 shows the relative amplitude C; = wC of the local oscil-
lation as a function of y = M/My;for each given 8 there is some
critical mass ratio above which we get local oscillation, the amplitude
varying rapidly from 0 to 1 as p increases. For C; # 1 the motion may
be described via a single oscillator; this situation occurs for virtually
any Bfor u > 1.

It is thus clear that vibrationally excited particles can occur in
above-equilibrium concentrations in adsorption and when exothermic
elementary acts of reaction occur at the surface of a catalyst. The
energy of these relatively long-lived hot particles is subsequently used
to activate fresh molecules. Active centers in a catalyst can occur at
any type of defect in the periodic structure that can give rise to local
oscillations. The activation energy comes to the adsorbed molecule
from the solid phase and from the active center, which acts as an
energy trap. The frequency of local vibration at an active center
should coincide with the vibrational frequency of the molecule that
leads to the desired reaction, because the probability of exchange is
maximal for resonance.

To conclude we note that the above argument applied for times
T < 7%, in which 7 is the characteristic time for energy exchange
between normal modes. The solution does not require resort to com-
puters to get the accomodation coefficient for any mass ratio and any
binding energy; it also gives the asymptotic value of the velocity of
the atom on reflection and so on.

I am indebted to N. D, Sokolov for discussions.
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